36

compute Il

APRIL/MAY, 1980, ISSUE 1

Improved Pulse Counting
Software For The 6522 VIA

Marvin L. De Jong

Dept. of Mathematics-Physics
The School of the Czarks

Pt. Lookout, MO 65726

Ever since I began playing with the 6522 I have been
trying to find a program that would use the 6522 to
count pulses for an exact one second interval. By exact
I mean one million clock cycles, not one million
plus or minus several instruction intervals. Of course,
it should be noted that if the system clock frequency
is not exastly one Megahertz then an error of
several instruction intervals may not be particularly
important. In this connection, the measurements I
have made of clock frequencies on a few KIM-1s
and one AIM 65 show that errors of several
hundred parts per million are not unusual, so if
your twenty-four hour clock runs slow or fast, do
not be surprised.

In any case, assuming that the system clock
frequency is precise to say one part per million,
the program supplied in this note will count pulses
for an interval that is as precise as the system
clock frequency. The assembly language program to
count pulses for exactly one second (one million
clock cycles) is given in Table 1, and the simple
interface circuit it requires is given in Figure 1.
A BASIC program to convert the pulse count to
decimal and display it is given in Table 2. This
program works on my AIM 65, and it will probably
have to be modified for other machines.

The assembly language program in Table 1
makes use of the T1 timer in its one-shot mode
with PB7 enabled. That is, the T1 timer is pro-
grammed to produce a time interval of 50,000
clock cycles, and during that interval of 0.05 s
PB7 is held at logic zero. Refer to Figure 1
and note that when PB7 is at logic zero the pulses
from some external device will be gated to PB6, the
pulse-counting pin for the T2 counter/timer. In order
to produce pulse-counting intervals that are
longer than 0.05 s, the T1 timer is reloaded and
started N times, where N is an eight-bit number
stored in a memory location labeled CNTR in Table
1. Thus, if N = 2 the counting interval is 0.1 s,
if N = 20 the counting interval is 1.0 s, and
if N = 200 the counting interval is 10 s. These
numbers must be converted to hexadecimal numbers
before using them in the program.

While T1 is timeing-out it is read continuously
so that it may be reloaded and started after exactly
50,000 clock cycles. This prevents PB7 from reaching

logic one any time during the N timing intervals.

If we were to allow T1 to time-out and then

reload and start it, PB7 would toggle from logic
zero to logic one and back to logic zero, with the
possibility of producing an extraneous count on PB6.
Thus, the program loop starting from REPEAT in
Table 1 and ending with DUMMY in the same
listing is tuned to take exactly 50,000 clock

cycles. Each time through the loop N is decremented,
until it reaches zero at which time T1 is finally
allowed to time-out for the last time.

When T1 times out for the last time, no more
pulses will reach PB6. At this time the interrupt
flag register (IFR) on the 6522 is read first. If the
T2 flag is set, then the puise count was greater
than $010000 (6553610) because the T2 counter was
initially loaded with $FFFF. If the T2 interrupt
flag (IFR5) is set, then the most-significant byte,
PLUSHI, of the pulse-count storage locations is
incremented. Otherwise it is cleared. After this
operation, the T2 counter is read and the resulting
pulse counts are loaded into PLSMI, the middle byte
of the three-byte pulse-count storage locations, and
PLSLO, the least-significant byte of the pulse-
count storage locations. The program then uses a
JMP instruction to return to the BASIC calling
program given in Table 2. Other BASICs may use a
different return technique.

The most obvious application of pulse counting
is a simple frequency meter. The programs and
interface described here will count at a maximum pulse
count of 131,071 counts during whatever counting
interval (0.1 s, 1.0 s, or 10 s) you choose. Note
that 131,071 = $01FFFF. Other applications include
voltage-to-frequency converters and temperature-to-
frequency converters. Commercial tachometer pickups
produce a pulse rate that is proportional to the
angular velocity (RPM) of a rotating shaft. The
6522 can be used to measure this pulse rate and
the microcomputer can convert it to rotations per
minute. The 6522 can also be interfaced to Geiger
counters (GM tubes) or scintillation detectors to count
nuclear events. There are a variety of new trans-
ducers appearing (temperature, light intensity, pres-
sure) that can be used with a V/F converter to
produce a pulse rate that is directly proportional to
the physical quantity being measured. Although direct
analog-to-digital (A/D) conversion is faster than
pulse counting, it usually requires a much more
sophisticated interface. In applications where speed is
not a problem, investigate the possibility of using
this simple program and interface.

compute H. APRIL/MAY, 1980. ISSUE 1

Table 1. Simple pulse counting program for the 6522.
$OF00 A9 01 START LDA $80 Make PB7 an output pin by loading
$0FG2 8D 02 A0 STA PBDD one into the data direction register.
$0F05 AS AO LDA $A0 Set up the ACR so T1 runs once, PB7
$0F07 8D 0B AQ STA ACR enabled, and T2 counts pulses.
$O0FO0A A9 14 HERE LDA %14 Set up counter to do 20 ($14) intervals
$OFOC 85 30 STA CNTR of 0.03s, totaling one second.
$0FOE A9 FF LDA FF Initialize T2 to start with
$0F10 8D 08 A0 STA T2LL $FFFF and count down.

- $0F13 8D 09 A0 STA T2CH T2 is now ready to count when PB7
$0F16 A9 4F LDA $4F goes to logic zero.
$0F18 8D 04 AO STA T1LL Set up T1 to count 5000 clock
$0F1B A9 C3 REPEAT LDA $C3 pulses, $C34F + 1 = 50000,
$0F1D 8D 05 A0 STA TiLH Start T1, PB7 to logic zero.
$0F20 AD 05 A0 WAIT LDA TiCH Read the T1 counter, high-order byte.
$0F23 DO FB BNE WAIT Wait until it is zero. These
$0F25 AD 04 A0 LOOP LDA TiCL instructions are part of a tuned
$0F28 C9 19 CMP $19 loop designed to wait exactly 50000
$OF2A B0 F9 BCS LOOP cycles before starting T1 again.
$0F2C C6 30 DEC CNTR The loop is repeated until the
$0F2E EA NOP contents of CNTR = 0.
$OF2F 90 00 BCC DUMMY These two dummy instructions tune
$0F31 DO E8 DUMMY BNE REPEAT the loop.
$0F33 AS 00 LDA $00 Clear the most-significant byvte of
$OF35 85 33 STA PLSHI the pulses counted.
$0F37 AD 0D AQ LDA [FR Read the IFR to see if count went
BOF3A 29 20 AND $20 through zero. Mask bits other than
$0F3C FO 02 BEQ OVER T2 flag. If it was set, add $010000
$OF3E E6 33 INC PLSHI to pulse counter.
$0F40 38 OVER SEC Otherwise, set carry flag and
$0F41 A9 FF LDA $FF perform subtraction to see how many
$0F43 ED 09 A0 SBC T2CH pulses were counted.
$0F46 85 32 STA PLSMI Result into middle byte of pulse
$0F48 A9 FF LDA $FF counter.
$0F4A ED 08 A0 SBC T2CL
$0F4D 85 31 STA PLSLO Result into low-order byte of pulse.
$0F4F 4C D1 CO JMP BASIC Return to BASIC.

Table 2. Counting Pulses with a BASIC program.
10 REM THIS PROGRAM REQUIRES THE MACHINE LANGUAGE ROUTINE IN TABLE 1.

20 POKE 04,00: POKE 05,15

30Y = USR(0)

40 X - PEEK(49) + 256"PEEK(50) + 65536"PEEK(51)
50 PRINT X; ‘‘PULSES PER SECOND”’

60 GO TO 30
70 END

D PULSE INPUT

Interface circuit for the pulse-counting program of Table 1. The inverter can be implemented with one of the other gates on the

Figure 1.

741802 chip. The incoming pulse train must be at TTL logic levels.

o

